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Abstract

Service composition on the Grid is a challenging task as documented

in existing research work. Even though there are initial attempts to use

the Business Process Execution Language (BPEL) to compose services

on the Grid, still there is a significant lack of flexibility and reusability

needed in scientific applications. In this paper we present BPEL for

Semantic Web Services (BPEL4SWS) - a language that facilitates the

orchestration of Grid Services exposed as traditional Web Services or

Semantic Web Services using a process-based approach. It is based on

the idea of WSDL-less BPEL and incorporates semantic descriptions

of process activity implementations which increases the flexibility

of business workflows as well as scientific workflows. Following an

approach that uses a set of composable standards and specifications,

BPEL4SWS is independent of any Semantic Web Service framework

and therefore can also utilize any kind of Semantic Grid services. The

advantages of BPEL4SWS are: (1) compliance with standards, (2)

independence on service technologies, (3) applicability for both business

applications as well as scientific workflows that use Grid services, (4)

improved flexibility of processes.

Keywords: Grid, BPEL, BPEL4SWS, Grid Services, Web Ser-

vices, Semantic Web Services, scientific workflows

1 Introduction

Web Service (WS) [38] technology is one implementation supporting the

construction of applications according to the style of a service oriented ar-

chitecture (SOA) [5, 21]. The primary advantage of Web Services is to aid
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application integration. Composing WSs is currently enabled mainly by a

process-based approach [24] embodied by the de facto standard BPEL (Busi-

ness Process Execution Language) [1]. The service oriented approach has

been successfully applied to Grid [12] environments by exposing Grid services

as Web Services. Even though the requirements of scientific applications

utilizing the grid differ from those of business applications [34] it has been

shown by various research results that using the service abstraction is a very

suitable approach when composing Grid services in complex scientific work-

flows [10, 33, 6, 35, 9]. The benefits of the process-oriented approach towards

service composition have been fully utilized, however the WS-centric nature

of BPEL has shown some deficiencies when addressing the requirements of

Grid service compositions.

BPEL uses WSDL [7] descriptions to identify partner services, i.e. services

are identified by port types and operations in the process models. As a

result only services that implement a concrete interface can be used as

implementations for a task in a process, which presents a major deficiency of

BPEL.

One approach to weaken the focus of WSs on interfaces has evolved

from the Semantic Web - the Semantic Web Service (SWS) technology.

The most prominent SWS frameworks are the Web Ontology Language for

Services (OWL-S) [28] and the Web Service Modeling Ontology (WSMO)

[22]. The SWS technology introduces an additional level of abstraction and

can be considered as an integration layer on top of Web Services. Instead

of a syntactic description of a WS a declarative description of the service

functionality is given. Similarly, the Grid computing infrastructures are
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currently being extended with approaches borrowed from the Semantic Web

and even Web 2.0 [25], which form a set of technologies that are meant

to enable the Semantic Grid [32, 25]. Nevertheless, the major focus is

still on enhancing the available Grid resources with semantic information

(approaches to associating this information, languages for describing the

meaning of Grid resources, registries for Semantic Grid Services, etc.) Still,

not much attention is being paid to enabling composition of Grid resources

and services in a more flexible manner. So far, scientific computations on the

Grid are hard-coded sequences of resource utilisation and computational task

submissions, according to a predefined algorithm, which frequently changes

due to developments in the respective scientific area. IT specialists support

scientists in this endeavour with the help of existing enterprise-strength BPEL

modelling tools and run time environments, however the process is tedious

and time-consuming due to the differences in knowledge and expertise on

both sides.

In this paper we advocate the use of BPEL for composition of Grid ser-

vices for the purposes of, for example, scientific workflows and life science

applications. We argue though that BPEL will bring enormous benefits with

respect to improved reusability and flexibility only if it enables composition

of not only Grid services exposed as WSs. To improve the usability of Grid

service compositions and the flexibility of building and executing them – char-

acteristics demanded by Grid applications [10, 34] – we draw upon techniques

developed for the Semantic Web and Semantic Web Service technology. We

therefore present an extension to the BPEL language, that combines such

techniques, which in combination address the above requirements. Chal-
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lenges ensuing from the need to deal with large amounts of data in scientific

applications are out of the scope of this paper.

The necessary background information about BPEL is provided in section

2. In section 3 we present BPEL4SWS, a language which enables describing

activity implementations in a machine processable manner using Semantic

Web technologies, as an alternative to specifying WS interfaces, i.e. it enables

the use of Semantic Web Services – in addition to traditional Web Services.

The BPEL4SWS framework exhibits and maintains the composability charac-

teristics of the WS technology. BPEL4SWS processes can compose semantic

WSs and conventional WSs intermixed within a single process; our assump-

tion here is that the service abstraction is valid on the Grid and that any

functionality can be considered as a service. To enable this, BPEL4SWS

provides a grounding mechanism that contributes to maintaining BPEL4SWS

processes compliant to standard WS-based communication. In our presen-

tation we focus on the main aspects of BPEL4SWS and explain how they

make up the functionality the language provides. These aspects are: (i) a

WSDL-less interaction model (BPELlight) for describing the process logic, (ii)

the annotation of SWS descriptions (such as WSMO and OWL-S) to support

semantic discovery, (iii) the usage of WS-* technology for the invocation of

services and (iv) the usage of SAWSDL [11] to provide a seamless mapping

between the XML representation of data and its ontological representation.

The interplay of the different aspects is then illustrated in section 4 by means

of four basic scenarios. We show the architecture of a BPEL4SWS engine in

section 5 and make an overview of a prototypical implementation in section

6. Finally we identify related work in the fields of Semantic Grid and BPEL
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extensibility (section 7) and state our findings in section 8.

2 BPEL

BPEL is the de facto standard for specifying business processes in a WS world.

It enables both, the composition of WSs [38] and rendering the composition

itself as WSs. Thus, BPEL provides a recursive aggregation model for WSs.

The composition of WSs can be specified as a flow between WS operations.

Therefore BPEL provides several so called structured activities that prescribe

the control flow between the interaction activities that model interactions

with other WSs. BPEL does not support explicit data flow; instead, data

is stored in shared variables that are referenced and accessed by interaction

activities and data manipulation activities (e.g. <assign> activity). The

control flow between activities can be structured either in a block-based

manner by nesting structured activities like <sequence> (for sequential

control flow), <flow> (for parallel control flow) and <if> (for conditional

branches in the control flow) activities, or graph-based by defining <links>

(i.e. directed edges) between activities in a <flow> activity; both styles can

be used intermixed.

In order to enable communication that is compliant to the Basic Profile [3]

of the WS-Interoperability Organization (WS-I)1, i.e. without using WSDL

operations of type notification and solicit-response, BPEL introduces the

concept of a partner link type which is defined as an extension to WSDL.

A partner link type defines two roles in terms of port types, namely a port

1http://www.ws-i.org/
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type the process offers to a partner and a port type the process requires from

the corresponding partner, and binds them together. The operations of type

notification and solicit-response of a role are expressed as operations of type

one-way and request-response, the other role has to provide.

Figure 1 shows an example of such a partner link type. It defines a channel

(salesPLT ) between two abstract business partners (roles) called buyer and

seller through which the partners exchange messages; these roles are defined

as port types, in the example buyerPT and sellerPT. In cases of only one

partner invokes the other partner the corresponding partner link type contains

a single role. To establish a contract (i.e. an agreement between two partners

which message channel to use), BPEL’s partner links reference a partner link

type and specify which role is taken by the process itself (myRole) and which

role is taken by the partner (partnerRole).

The interaction activities [38] (<receive>, <reply>, <invoke> and

<pick>) and the event handlers are used to define the actual message

exchange corresponding to a partner link, i.e. data transmitted and style of

communication (blocking vs. non-blocking). For that purpose, interaction

activities reference a partner link and a WSDL operation. Receiving activities

(i.e. <receive> and <pick>) as well as the event handler implement an

operation of type one-way of the process’ port type. In combination with the

<reply> activity receiving activites can also implement a request-response

operation of the process’s port type. The <invoke> activity references an

operation of the partner’s port type, and implements either a request-response

or a one-way operation.

The use of request-response operations for communication in BPEL is
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illustrated in Figure 2 and Figure 3. The former depicts an invocation of the

process realized by a <receive>-<reply> pair. Both activities reference

an operation the process offers. The corresponding partner link only specifies

myRole. The latter shows how a blocking invocation of a service can be

modelled: The <invoke> activity of the process uses an operation provided

by the partner service. In this case only the partnerRole of the partner

link is specified. In the remainder of the paper this style of communication is

also referred to as synchronous communication.

Figure 4 illustrates the use of a <receive> and an <invoke> activity to

model the invocation of a process using two one-way operations, one provided

by the partner service and one by the process as call back. The partner link

used within this example references the partner link type given in Figure 1 and

defines myRole="seller" and partnerRole="buyer". An example of

an non-blocking invocation of a partner using two one-way operations is

shown in Figure 5. In this example the partner link type presented in

Figure 1 is also used but the partner link defines myRole="buyer" and

partnerRole="seller". This modelling style is used in case of long-

running processes/services because the WS-I basic profile also regulates

that an HTTP binding must be used. A request-response operation with

HTTP binding implemented by a <receive>-<reply> activity pair or an

<invoke> would simply result in a time out. In the remainder of the paper

this style of communication is also referred to as asynchronous communication.

The <pick> activity and the <eventHandler> play a special role

with respect to the WSDL dependency since they do not depend on WSDL

itself but encapsulate elements which references a WSDL operation, the
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<onMessage> element and <onEvent> element respectively.

3 BPEL4SWS

As shown in the previous section BPEL makes use only of WSs to enable

service composition. Partner interfaces are described using WSDL; they are

hard-coded within the process logic. As a result, only services that implement

the WSDL interface used in the BPEL definition can be used as activity

implementations; services that provide the same functionality but implement

other interfaces cannot be used. This hampers integration of functionally

equal services.

Semantic Web Services describe services not only in terms of an interface

but rather describe their functionality and capability using rich conceptual

frameworks based on ontologies, i.e. in a machine processable manner, which

for instance enables mediation between the description of the goal a consumer

has and the functionality a service provides. For that reason Semantic Web

Services increase the level of integration and can be considered an integration

layer on top of Web Services where services are discovered based on their

functionality and not based on their signature.

To enable the usage of Semantic Web Services technology within Grid

processes there is a need for a process language that does not specify partner

services using their WSDL description, but rather allows using higher level

semantic descriptions. BPELlight [29] decouples process logic and interface

definition (but still is applicable in a WS-* environment) and therefore makes

for a good candidate as a basis for a process execution language for Semantic
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Web Services.

Indeed, BPEL4SWS uses BPELlight as basis and allows to attach SWS

descriptions to BPELlight so that SWS frameworks like OWL-S and WSMO

and corresponding implementations can be used to discover and select SWS

that implement the functionality required for an activity. In addition both,

the SWS description and the process itself are partly grounded to WSDL

to facilitate WS-* based communication (see section 3.3). Current SWS

frameworks use ontologies as data model to facilitate semantic discovery. For

that reason, SAWSDL is used to enable a seamless mapping of data between

its XML representation and its ontological representation.

3.1 BPELlight

BPELlight extends BPEL 2.0 via additional elements in a separate namespace2

which act as a replacement for the WSDL-based interaction model. It provides

a WSDL independent interaction model and (re-)introduces the concept of a

partner.

BPELlight defines a mechanism to describe the communication between

partners without any dependency on WSDL. Therefore it introduces an ele-

ment, the <conversation> element, that facilitates grouping of interaction

activities/messages and thus enables defining a complex message exchange

between partners. Definitions of <conversation>s are encapsulated in a

<conversations> element which is defined as a child of the <process>

element.

BPEL 1.1 has the notion of a partner that comprises multiple partner

2xmlns:bl=http://iaas.uni-stuttgart.de/2007/BPELlight
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links. However, the <partner> element has been removed in BPEL 2.0

because grouping partner links is considered a deployment issue and the

partner is not evaluated during runtime but rather is only used for docu-

mentation purpose. BPELlight reintroduces the notion of a partner. Like a

conversation, the partner element groups several messages, which may belong

to different conversations. A partner in BPELlight enables expressing that

multiple messages have to be exchanged with one and the same business entity.

Additionally, BPELlight enables naming the partner and thus identifying a

concrete organisation. Within a process multiple partners can be specified.

BPELlight includes an extension of the <assign> activity that enables copy-

ing a partner identification into the <partner> element. Therefore the

<to> specification is extended with a partner attribute that defines to

which partner definition the concrete partner instance information (business

entity) is copied. This is similar to copying an endpoint reference to a partner

link in conventional BPEL.

In addition, WSDL independent interaction activities are needed. Due

to the fact that the partnerLink and operation attribute of interaction

activities and event handlers defined in BPEL are mandatory, these activities

have a WSDL dependency. Thus, BPELlight introduces new interaction ac-

tivities without the WSDL dependency using the <extensionActivity>

mechanism. An <interactionActivity> can be configured such that it

behaves like any of the basic interaction activities BPEL defines (<receive>,

<reply> and <invoke>). Additionally, BPELlight defines WSDL inde-

pendent <pick> and <eventHandler> elements. A set of interaction

activities, that form a message exchange pattern, are grouped using the
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<conversation> element. This way BPELlight enables modelling arbitrary

message exchange patterns or service interaction patterns [4].

3.2 Attachment of SWS Descriptions

According to the composable approach we take for BPEL4SWS we do not only

allow encode the semantic descriptions within the BPEL4SWS process model.

Also WS-PolicyAttachment [2] can be used to add semantic annotations. In

general, annotations can be attached anywhere, i.e. on the activity level as well

as on the conversation level. We advocate attaching the SWS descriptions to

conversations. The meaning of the semantic annotations on the conversation

level is described in the following sections.

In general a BPELlight conversation can be multilateral, however, since

all existing SWS frameworks only deal with bilateral message exchanges we

consider a conversation bilateral in the remainder of the paper. In BPEL4SWS

there are two different categories of conversations, providing and consuming.

A providing conversation is a conversation with a partner via which the

partner uses a service the process provides, a consuming conversation is a

conversation with a partner, where the process uses a service provided by a

partner.

3.2.1 Using OWL-S Attachments

OWL-S (Web Ontology Language for Services) [28] was the first approach

towards describing services semantically. It uses ontologies as data model

and describes a service in terms of Service Profile, Service Model and Ser-

vice Grounding. The capabilities of a service in terms of inputs, outputs,
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preconditions and effects are described in the Service Profile. The service

model describes in which order messages have to be exchanged to consume

the service’s functionality and the Service Grounding defines which WSDL

operations of a concrete service have to be used to exchange these messages.

OWL-S describes the execution of a Web service as a collection of remote

procedure calls. We argue that this is only correct for a small percentage

of the cases in Grid processes [30] since typically processes are long-running

and require asynchronous communication. OWL-S describes a self-contained

service and has no notion of two partners (requester and provider) that

provide means to invoke each other (compare partner link). It is designed to

ground to all four kinds of WSDL (1.1) operations: one-way, request-response,

notification and solicit-response. However, due to the WS-I Basic Profile [3]

the WSDL operations of type notification and solicit-response must not be

used. The lack of a partner model is the major deficiency of OWL-S since

WS-* based and WS-I compliant asynchronous communication, i.e. compliant

to the basic profile, is not considered.

Nevertheless, OWL-S can be used in the context of BPEL4SWS, but only

for the cases where short-running services are invoked using synchronous

communication: an OWL-S service is attached to a conversation and the

OWL-S service model describes the sequence of BPEL4SWS interaction

activities associated with the conversation. An OWL-S description attached

to a ’providing’ conversation is grounded to the WSDL interface that describes

the process, an OWL-S description attached to ’consuming’ conversations

is not grounded, because the WSDL interface implemented by the partner

service is assumed to be unknown during design time. This way dynamic
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service discovery independent of WSDL port types is enabled.

3.2.2 Using WSMO Attachments

Compared to OWL-S, WSMO (Web Service Modeling Ontology) is the

more promising approach because its conceptual model enables standards

(WS-*) based asynchronous communication. WSMO distinguishes between

the description of a service (WSMO Web Service) and the description of

requirements a client has on a service (WSMO Goal). Both descriptions are

based on ontologies and contain a functional description that semantically

describes what a service provides or a client requests in terms of preconditions,

assumptions, postconditions and effects and an interface description, the

so called WSMO choreography [31]. Thus WSMO enables expressing what

kind of functionality a service provides, which message exchange is needed

to consume its functionality as well as what a client aims to achieve and

which message exchange the client will have. This message exchange can

be grounded to WSDL operations (of type request-response and one-way)

on every side of an interaction in such a way that both synchronous and

asynchronous communication is enabled in a standards (WS-*) based and

interoperable manner (i.e. WS-I compliant).

Listing 1 shows an example of a WSMO Web Service description [20]. It

describes a part of the Amazon Web Service3 which takes a search request

for an item as input and provides a search result as output.

In order to use the WSMO framework for BPEL4SWS, WSMO goals are

3http://webservices.amazon.com/AWSECommerceService/

AWSECommerceService.wsdl
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attached to ’consuming’ conversations and Semantic Web Service descriptions

are attached to ’providing’ conversations. The choreography of goal and

Web service describe the sequence of the BPEL4SWS interaction activities

associated with the conversations they are attached to. The choreography

presented in Listing 1 for instance corresponds to a BPEL process with a

receive and subsequent reply activity like the one presented in figure 2. The

“in” mode describes the receive activity, the “out” mode the reply activity and

the transition rule describes the flow between these two messages. The same

SWS description can be used to describe the conversation of the BPEL4SWS

process presented in section 4.1. This way the process can be discovered by

WSMO implementations using its WSMO Web Services description. Activity

implementations of BPEL4SWS can be discovered by submitting the attached

WSMO goal to a WSMO implementation. Similarly to OWL-S, the discovery

of both, the process itself and its activity implementations is independent of

WSDL port types.

To support the goal based communication features BPEL4SWS provides,

a WSMO implementation like WSMX [15] which is part of the Semantic

Service Bus (SSB) presented in [19] has to provide several operations [30].

To establish a conversation with a partner service that is able to fulfil a

WSMO Goal, the registerCommunication(goal):context opera-

tion can be used. The returned context identifies the created conversation

in the bus. Sending messages via an already established conversation to a

partner service hosted by the SSB is enabled by two different operations:

invokeWebService(context, data):data for blocking communica-

tion and invokeWebService(context, data) for non-blocking com-
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munication.

The partner element in BPEL4SWS can be used to constrain that a

partner has to satisfy multiple goals. Whenever a partner has to be dis-

covered, a list of goals is sent to the entry point findPartner(list

of goals):partner [30] of a WSMO implementation. And whenever

a conversation starts that belongs to a specific partner, the entry point

registerCommunication(partner, goal):context is invoked. The

communication between the process and the service(s) is then conducted using

the afore mentioned entry points.

In general, implementations of other SWS frameworks that provide similar

communication features and that can be integrated easily into the SSB are

also appropriate for supporting the service discovery task required when

executing BPEL4SWS processes. However, since WSMO currently is the

most suitable SWS framework for use in Grid processes due to its support for

asynchronous communication we focus on using the WSMO framework for

discovery of Semantic Web Services.

3.3 Grounding to WSDL

BPEL4SWS uses (semantic) Web Services as activity implementations and

is exposed as Web Services as well as Semantic Web Services which are in

turn grounded to WSs (compare Listing 1). Thus, the BPELlight interaction

model also has to be partly grounded to WSDL. To preserve the decoupling

of process logic and activity implementation definition this is done within an

artefact called grounding file and not within the BPELlight description.

The grounding for the consuming conversation that are annotated with
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a WSMO goal only specifies which WSDL operations are provided by the

receiving activities. This is illustrated in Listing 2. This way, an engine

implementation can resolve an incoming message to a certain activity within

the process model. An <invoke>-like <interactionActivity> simply

sends (and receives) a message to (and from) an SSB.

For consuming conversations without goal attachment and for providing

conversations in general the grounding is more complex (see Listing 3). In

this case the conversation has to be grounded to a partner link type which is

required to support WSDL based asynchronous communication. Therefore, it

has to be specified which role of the partner link type the partner service and

the process itself take. In addition to the grounding of the conversation to

the partner link type, all interaction activities, including the invoking ones

have to be grounded to WSDL operations.

Using this full grounding for consuming conversations means that tradi-

tional Web Services are used. In this case a WSMO goal must not be attached

to the conversation. Whenever a sending activity is performed, the engine

implementation looks up the grounding file for the operation it has to invoke

and whenever a message is received it can be dispatched to an activity in the

process model using the information given in the grounding file.

By specifying also the partner role for a providing conversation, a process

that is exposed as a Semantic Web Service can also be consumed like a

traditional WS. The grounding file specifies how incoming messages are

resolved to activities and which operations have to be used by sending

activities.

In case the process is discovered using its SWS description and asyn-
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chronous communication is used, the process does not call back (invoke) the

partner directly using the operation specified in the grounding file but rather

sends (and receives) a message to (and from) an SSB.

Enabling exposing a process as both, WSDL service and SWS is of utmost

importance because if the process would only be exposed as a SWS, and

invocation via traditional WS technology would not be supported, most of

the clients (not supporting Semantic Web Service technology) would not be

able to use its functionality. In this case, building a semantic Grid process

and therefore a Semantic Web Service would not increase but rather reduce

the number of clients, which is a knockout criterion.

3.4 Dualism of Data Representation Using SAWSDL

The type system used in BPEL(light) is XML Schema, i.e. BPEL is based on

XML data processing. However, existing Semantic Web Service frameworks

are using ontologies as data model and their implementations (e.g. WSMX)

require data in ontological form to facilitate semantic service discovery.

Hence, when using BPEL in combination with SWS there is a need to

transform between the ontological and XML representation of data. SAWSDL

[11] provides semantically annotated data types as means to describe the

so called lifting and lowering of data which is basically a transformation

of the representation of data. It introduces the concepts of modelRefer-

ence, liftingSchemaMapping and loweringSchemaMapping. The modelRef-

erence identifies the concept to which the XML data can be lifted, and

the liftingSchemaMapping defines how this transformation from the XML

representation to the ontological representation can be done. The lower-
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ingSchemaMapping can be used to lower the data again from ontological to

its XML representation.

In Listing 4 a (simplified) SAWSDL description of a service is given. A

WSMO description for this particular service has been depicted in Listing 1.

4 Service Interaction Scenarios

In this section we show how an execution engine implementation uses the

various artefacts described in the previous sections to implement four basic

interaction scenarios. The interaction scenarios include invocation using

traditional WS technology and invocation using an SSB considering both

short-running and long-running interaction.

4.1 Invoking Short-running BPEL4SWS Processes

A process that first receives a message from and later returns a message

to a partner service and is supposed to be short-running can be exposed

as a request-response operation. In this case a receiving activity and a

subsequent sending activity of the BPELlight process logic are grounded to

this particular WSDL operation which is specified in a grounding file, that

contains deployment specific information. The process logic as well as the

grounding specification are presented in Figure 6. The WSDL specification

has been presented in Listing 4

When a client invokes the WSDL operation, the call is resolved to a

receiving activity in the process model by the process engine using the

information given in the grounding file. Later, when the corresponding
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sending activity is executed, the return value is assigned to the WSDL

operation using the grounding file and the WSDL call is completed.

Additionally, the process can be made available as a Semantic Web Service

at an SSB (see Figure 7). Therefore a WSMO WS has to be modelled that

describes the process’ interface and capability and grounds to the WSDL

operation the process is exposed as (see and Listing 1).

In addition, semantic annotations and lifting & lowering rules have to be

defined using SAWSDL (see Listing 4). The WSMO Web Service description

has then to be registered by submitting it to the SSB which can be considered

the deployment of the SWS.

After the process has been discovered by matching a goal submitted by a

requester with its WSMO WS description which is also known as goal-based

discovery , the ontological instance data has to be lowered to its XML Schema

representation. This is done by the SSB via the loweringSchemaMapping

defined using SAWSDL. In the next step, the service binding and location

given in the WSMO WS grounding is used together with the XML data to

invoke the BPEL4SWS process. The process engine processes the request

like described above. After the WSDL call is completed, the SSB lifts the

returned XML data to an ontological level, i.e. creates ontological instances

using the liftingSchemaMapping defined in the SAWSDL of the process.

4.2 Invoking Short-running Partner Services

In case a message has to be sent to and received from a service that is supposed

to be short-running, this can be implemented by a single <invoke>-like

interactionActivity. The conversation and the invoking activity are either
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grounded to the WSDL interface the service provides or they are described

using an attached WSMO Goal.

When the process engine executes an activity that first sends and then

receives a message and there is no goal attachment at the conversation,

the grounding file is used to figure out which operation should be invoked.

In case there is a goal attachment at the conversation (linked with a syn-

chronous invocation activity), there is no grounding defined (see Figure 8).

Instead, at the beginning of the conversation, a goal is submitted to the

SSB. The SSB performs goal-based discovery and initializes the communi-

cation between the discovered service and the process by creating context

information and sending it back to the process engine for correlation. This

context is used to invoke the discovered service via the SSB using the entry

point invokeWebService(context, data):data. Note that the data

therefore has to be available at the ontological level.

4.3 Invoking Long-running BPEL4SWS Processes

A process that first receives and later returns a message to a partner service

and is supposed to be long-running cannot be exposed as a request-response

operation. In this case a receiving and following sending activity have to

be mapped to two one-way operations because a request-response operation

using a WS-I compliant HTTP binding would produce a time out. In this

scenario a client invokes the process via a one-way WSDL operation and

provides an endpoint (described via another WSDL one-way operation) where

the process can call back. The grounding file of the process defines that a

receiving activity is grounded to the one-way operation the process provides
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and a subsequent sending activity is grounded to the one-way operation the

client is supposed to provide.

When a client invokes the WSDL operation of the process it also submits

information about the concrete endpoint and binding for the call-back. Like

in the first scenario, the grounding file is used to dispatch the invocation to a

certain activity in the process model. When processing the sending activity

the process engine evaluates again the grounding file and uses the appropriate

WSDL operation in conjunction with the endpoint information to call the

client back.

Again, the process can also be made available at a WSMO implementation

as a Semantic Web Service by specifying a WSMO WS that describes the

process interface and capability on a higher level of abstraction in a machine

processable manner and grounds the incoming message to the WSDL operation

the process provides. The outgoing message however is not grounded to a

specific operation because the WSDL operation of the partner service is

considered unknown prior to execution; the call-back endpoint is provided by

the SSB.

In case the process not invoked using traditional WS technology only, but

first is discovered via its WSMO WS desription as shown in Figure 9, the SSB

invokes the process using the grounding information given in the WSMO Web

service description of the process and the lowered instance data. Additionally,

it submits context information in the message header that identifies the

communication between the SSB and this particular process instance. Via

this header information, the process engine detects that it has been invoked

by the SSB. When the process navigator reaches the corresponding sending
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activity it does not use the WSDL operation specified in the grounding file

(the light gray parts of Figure 9) but rather sends the message to the SSB

using the entry point invokeWebService(Context, Data).

4.4 Invoking Long-running Partner Services

In case a message has to be sent to and received from a service that implements

a task which is supposed to be long-running, this can neither be grounded to a

request-response operation the partner provides nor be described with a Goal

that causes the usage of the entry point invokeWebService(context,

data):data.

When using traditional WS communication this has to be grounded to

two one-way operations one provided by the service and one provided by the

process. This is similar to the invocation of a long-running process using

traditional WS technology. When the process engine executes the sending

activity the WSDL operation that is to be invoked is resolved using the

grounding file. Later, when the invoked service calls back, the receiving

activity (associated with the call back operation) is also discovered using the

grounding file.

Similarly to the invocation of short-running services using goal-based

discovery the invocation of long-running services starts with submitting a

goal associated with a conversation to the WSMO implementation. However,

in contrast to the invocation of short-running services, the incoming message

is grounded to a WSDL operation the process provides as call-back (see

Figure 10). The sending activity is executed by sending ontological lifted

data to the SSB using the entry point invokeWebService(context,
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data). In a later step, the SSB uses the grounding information in the goal

to call the process back via the provided WSDL one-way operation. This

call back is done using XML data generated by lowering the ontological data

according to the lowering rules described using SAWSDL. It is dispatched to

the corresponding activity using the grounding file of the process.

5 Architecture of a BPEL4SWS Engine

The architecture of the BPEL4SWS engine is similar to well-known workflow

engines – the main components are described in the following (see Figure 11).

5.1 Architecture Components

To manage and configure the engine one uses the administration module. The

same component exposes operations for deployment and undeployment of

processes.

The deployment component is responsible for deploying the artefacts

needed to execute a BPEL4SWS process. These are a BPEL4SWS description,

corresponding WSDL files and a deployment descriptor. The process model

is validated, compiled and stored in the build-time database of the engine.

Process models and process instance data are stored in two logically

separate repositories - the build-time database and the Runtime database. The

build-time database stores the compiled process model representation while

the Runtime database handles runtime data of all process instances being

executed. Each process instance contains a reference to its corresponding

process model in the build-time database.
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The communication between the engine and external services and clients

is handled by the integration layer. In particular, it is responsible for receiving

external messages, dispatching them to the execution components and sending

results back to the clients or partner services.

The integration layer implements the abstract endpoint implementation

which is the bridge between the engine and a service bus. The service bus

is the service middleware responsible for exposing different kinds of services

(e.g. Grid Services exposed as WSs or Semantic Web Services) in a unified

access scheme [19].

The process navigator uses the process models stored in the build-time

database to execute their instances by navigating over the process models.

The state of each process instance is stored in the runtime database. The

navigator delegates the service interactions and actual message exchange to

the integration layer and hence to the service bus.

For transforming XML data into ontology instances and vice versa the

engine employs the Lifting & Lowering component. Semantically annotated

XML variables can thus always be made available in terms of their ontological

representation, whenever needed.

5.2 Component Interaction Scenarios

The interplay among the components of the architecture can be demonstrated

in terms of the following scenarios: (i) process deployment and (ii) process

execution.

During process deployment the process model is parsed, validated and

transformed into an engine-internal representation, which is stored into the
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build-time database. The WSDL interfaces of the process are used to expose

it as a service, which is done by exposing new endpoints at the integration

layer. During process execution four basic scenarios are of interest: receiving

messages and sending messages on behalf of a process, evaluating conditions

specified in terms of semantics and mediation.

Whenever the engine receives a message it either dispatches it to an

existing process instance, or creates a new one. In both cases the messages

arrive at the process endpoint at the integration layer. The correlation of a

message to an existing or a new process instance is done by the integration

layer. Once the message is consumed by the navigator, the corresponding

interaction activity is executed.

Interaction activities can also send messages. Therefore during the ex-

ecution of such an activity the integration layer receives a command for

sending a message by the navigator. If the target is a WSDL Web Service,

the message is serialized in XML. In case an SWS is invoked (via an SSB),

the data representation is an instance of an ontological concept, generated

by the Lifting & Lowering component. If the interaction is synchronous,

the navigator suspends the process instance at the activity and resumes it

once it receives a response – either XML data from a WSDL Web service

or an instance of an ontological concept from an SWS. In contrast to this

communication mode, whenever asynchronous communication is required the

process instance is not blocked until the response is received.
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6 Prototypical Implementation

After the comparison of existing BPEL engines, including Apache ODE, JBoss

JBPM/BPEL4 and ActiveBPEL5, we have chosen to use the Apache ODE

engine as a basis for our implementation. Our selection was based on various

functional and non-functional criteria such as licensing, support for WS-BPEL

2.0, extensibility & integration options.

A number of extensions and modifications to Apache ODE were required

to realise the architecture described in the section above and thus provide

support for BPEL4SWS. Since the service bus provides the appropriate service

abstraction it is up to the service bus implemention to enable the interaction

with Grid services. This can be done in a way similar to the approach

described in [19].

Apache ODE follows a lightweight and modular architecture but lacks sup-

port for extensibility, in particular for the elements <extensionActivity>

and the <extensionAssignOperation>. We introduced a plug-in con-

cept that allows plugging in the so-called ExtensionBundles. Bundles are

linked to a specific extension namespace and consist of several operations refer-

enced by <extensionActivity> and <extensionAssignOperation>

elements in the BPEL process model and implement the concrete extension

functionality. The bundles can be registered; namespaces are known to the

process model through the <extension> element [36].

During deployment to Apache ODE the BPEL file is parsed into an in-

memory representation (internal object model), several optimisations are

4http://www.jboss.org
5http://www.activebpel.org
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performed and the process model is checked against a set of static analysis

rules. We enhanced the parser and compiler of ODE to support the following

elements: <extensionActivity>, <extensionAssignOperation>,

<extensions> and <extension>.

The element <conversation> is simply treated as a BPEL extensibility

element and is directly recognised and included by ODE into the internal

object model.

Furthermore we have implemented the semantic counterpart of the in-

voke activity – <interactionActivity>. It performs a look up of the

referenced <conversation> element, which in turn keeps a reference to a

WSMO Goal. This goal is passed to the SSB which then discovers, selects

and invokes a best-matching Semantic Web Service.

7 Related Work

Mandell and McIlraith [27] identified the shortcomings of BPEL with respect

to the flexibility of service and partner discovery. They presented a proxy-

based approach where service requests are delegated to a discovery service

through a locally bound WSDL interface, i.e. they mix different levels

of abstractions in the process model: services and infrastructure services.

They use OWL-S to semantically describe the activity implementations of a

BPEL process. Whether the language is extended has not been presented.

Asynchronous and stateful communication between services is not discussed.

Meteor-S [37] also takes a proxy-based approach where all interactions

are bound to virtual partners, hosted by a process configuration module.
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The process configuration module delegates the service requests to concrete

services either bound during deployment or during runtime. As the proxy

is stateful, it enables creating an execution plan in case it is required to

invoke several operations in order to achieve the specified goal. Asynchronous

interaction between the process and the proxy, or stateful interaction via

multiple synchronous invocations between the proxy and the process is not

discussed. Like in the previous approach, it is not known whether the language

is extended and how the semantic annotation of the interaction activities is

done, i.e. whether a single <invoke> activity or a complete partner link is

described semantically.

In contrast to the already mentioned approaches Karastoyanova et al. [18]

present an extension of the language, namely an extension to the <invoke>

activity. Their approach also uses OWL-S to describe activity implementations

and only allows for synchronous invocation of OWL-S services.

Grid applications are often provided for use to scientists via scientific

portals. Grid portals provide predefined sequences of computational steps

for multiple scientific domains. Usually such portals are accessible via a

Web interface and deal with security issues, Grid service execution and

management based on input data from the scientists, monitoring of the

complex computations on the Grid. The set of steps such applications must

perform is often hard-coded and hence these applications exhibit rigidity and

lack of reusability. Recently, together with the shift towards service orientation

[13] multiple experiments have been conducted to assess the applicability of

BPEL for enabling Grid service compositions. BPEL has been successfully

applied in multiple Grid applications; examples include Grid workflows for
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the automotive industry [6], chemical polymorph prediction applications [10],

bioinformatics [8].

The authors of [16] focus on addressing the fact that BPEL in incapable

of dealing with services compliant to the Web Service Resource Framework

(WSRF) transparently to both the workflow designer and the execution en-

vironment. This work presents an extension to the BPEL language which

allows the interaction with, as they state, both stateless and stateful ser-

vices and their resources. In general, the extensions to the language enable

the use of conventional WSs (which are considered by some authors to be

exclusively stateless) and WSRF services (stateful). The approach in [16]

aims at facilitating seamless integration of Grid applications in business ap-

plications and vice versa. The BPEL extensions are implemented in terms

of an Eclipse-based workflow modelling tool and an extended BPEL engine

implementation. Similar approach has been presented by [33], [9] and [35];

these research works focus either on modelling of such processes only, or on

execution as well. In comparison, the approach presented in this paper is

more generic, since it makes it possible to utilize any kind of business services

and services on the Grid and not only WSDL and WSRF services.

In [23] we have shown how BPEL can be used even today in WSRF

environments if generation of WSRF-specific fragments in corresponding

BPEL processes is acceptable.

Significant research effort has been dedicated to providing the Grid with

semantic information. The Semantic Grid is defined as an ”extension of the

current Grid in which information and services are given well-defined mean-

ing through machine-processable descriptions which maximize the potential
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for sharing and reuse” [32]. The available approaches and corresponding

prototypes focus mostly on enabling discovery of Grid services based on

semantic descriptions of services [14]. For example, the work presented in

[26] demonstrates a semantic service discovery framework for Grid services,

using DAML+OIL [17] (the predecessor of OWL) as ontology language. In

[25] a layered architecture for the semantic Grid has been presented which

draws upon service orientation in that each Grid service is exposed as a (Web)

service. Each Grid service on the SGrid platform is a computational, an

information or knowledge service and has a semantic description defined in a

Semantic Service Ontology Repository. The authors present a CORBA imple-

mentation of the SGrid platform, that supports SOAP/HTTP service calls to

WSs implemented in terms of Java, Fortran or C (the legacy applications).

Our approach has a different focus. It concentrates on enabling composition

of any kind of services - Web Services, Grid Services, legacy Grid Services -

while focusing on their functional meaning rather than on interfaces described

in terms of a particular service technology.

8 Conclusion

In this paper we presented BPEL4SWS – a flexible and comprehensive

approach for composing Grid Services exposed as Web services or Semantic

Web Services. It allows for the description of activity implementations

semantically, i.e. using SWS concepts and thus enables application integration

on a higher level of abstraction.

The presented framework is composed of a set of specifications and is
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by design independent of any specific service technology, i.e. not specific to

e.g. Grid services exposed as Web services. It introduces an additional level

of indirection and thus abstracts away details specific for concrete service

technologies from process models. Moreover it renders service compositions

independent of any Semantic Web Service technology providing even more

benefits. The BPEL language is extended to facilitate specifying activity

implementations via annotations; the activity implementations can be Grid

services exposed as Web services or made available through any other ser-

vice technology to come. Additionally, in contrast to other approaches the

interfaces of the service middleware are not hard-wired in the process model.

Interfacing the service middleware is not a concern of the process models that

reflect the business logic and is considered to be part of the configuration

of the execution environment. The configurability of the processes and the

underlying runtime is utilized/applied to bring in the greatest benefit pos-

sible. Therefore, BPEL4SWS separates concerns of process modelling from

middleware concerns much more appropriately/successfully than BPEL.

Another advantage BPEL4SWS provides is the support for asynchronous

communication which is essential for Grid processes. Furthermore, it is

designed to support representation of data in process models in terms of both

conventional type systems and in terms of ontologies. This is enabled by

an XML ↔ Ontology dualism for process data representation (including the

mapping between data and its semantic description) that makes it possible to

exchange data with traditional services in enterprises and on the Grid, as well

as to consume and produce data during the interaction with any Semantic

Web Service infrastructure. Hence this approach shows improvements in
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interoperability and therefore facilitates integration enormously. Supporting

various attachment and service descriptions also raises more requirements on

system and process designers. Thus appropriate tool support for modelling

BPEL4SWS processes and semantic annotations is crucial and is in the scope

of our future work.
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<wsdl:definitions
targetNamespace=...
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype">
...
<plnk:partnerLinkType name="salesPLT">

<plnk:role name="buyer"
portType="buyerPT" />

<plnk:role name="seller"
portType="sellerPT" />

</plnk:partnerLinkType>
...

</wsdl:definitions>

(a) code snippet

buyerPT sellerPT

salesPLT
buyer seller

(b) scenario

Figure 1: The WSDL extension <partnerLinkType>
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<flow>
<links>

<link name="receive-to-..." />
<link name="...-to-reply" />...

</links>...
<receive name="receiveOrder"

partnerLink="salesPL"
operation="order"
variable="item">

<sources>
<source linkName="receive-to-..." />...

</sources>...
</receive>
<reply name="sendConfirmation"

partnerLink="salesPL"
operation="order"
variable="confirmation">

<targets>
<target linkName="...-to-reply" />...

</targets>...
</reply>...

</flow>

(a) code snippet

<flow>
<links>

<link name="receive-to-reply" />
...

</links>
...

<receive partnerLink="salesPL"
operation="order" 
variable="item">

<sources>
<source linkName="receive-to-reply" />
...

</sources>      
...

</receive>
<reply partnerLink="salesPL"

operation="order"
variable="confirmation">

<targets>
<target linkName="receive-to-reply" />
...

</targets>

...
</reply>
...

</flow>

…

BPEL process any WSDL service

(b) scenario

Figure 2: Invocation of a short-running BPEL process
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<invoke name="orderItem"
partnerLink="salesPL"
operation="order"
inputVariable="item"
outputVariable="confirmation">

...
</invoke>

(a) code snippet

<invoke partnerLink="salesPL"
operation="order"
inputVariable="item"
outputVariable="confirmation">

...
</invoke>

…

…

BPEL process any WSDL service

(b) scenario

Figure 3: Blocking invocation of a WSDL service
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<flow>
<links>

<link name="receive-to-..." />
<link name="...-to-send" />...

</links>...
<receive name="receiveOrder"

partnerLink="salesPL"
operation="order"
variable="confirmation">

<targets>
<target linkName="receive-to-..." />...

</targets>...
</receive>...
<invoke name="sendConfirmation"

partnerLink="salesPL"
operation="getOrder"
inputVariable="item">

<sources>
<source linkName="...-to-send" />...

</sources>...
</invoke>

</flow>

(a) code snippet

<flow>
<links>

<link name="send-to-receive" />
...

</links>
...
<receive partnerLink="salesPL"

operation="getConfirmation" 
variable="confirmation">

<targets>
<target linkName="send-to-receive" />
...

</targets>
...

</receive>
...
<invoke partnerLink="salesPL"

operation="getOrder"
inputVariable="item">

<sources>
<source linkName="send-to-receive" />
...

</sources>
...

</invoke>
</flow>

…

BPEL process any WSDL service

(b) scenario

Figure 4: Invocation of a long-running BPEL process
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<flow>
<links>

<link name="send-to-..." />
<link name="...-to-receive" />...

</links>...
<invoke name="orderItem"

partnerLink="salesPL"
operation="getOrder"
inputVariable="item">

<sources>
<source linkName="send-to-..." />...

</sources>...
</invoke>...
<receive name="receiveConfirmation"

partnerLink="salesPL"
operation="getConfirmation"
variable="confirmation">

<targets>
<target linkName="...-to-receive" />...

</targets>...
</receive>

</flow>

(a) code snippet

…

<flow>
<links>

<link name="send-to-receive" />
...

</links>
...
<invoke partnerLink="salesPL"

operation="getOrder"
inputVariable="item">

<sources>
<source linkName="send-to-receive" />
...

</sources>
...

</invoke>
...
<receive partnerLink="salesPL"

operation="getConfirmation" 
variable="confirmation">

<targets>
<target linkName="send-to-receive" />
...

</targets>
...

</receive>
</flow>

BPEL process any WSDL service

(b) scenario

Figure 5: Non-blocking invocation of a WSDL service
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� �
namespace { ”http://www.wsmo.org/webServices/amazonWebService#”,

am ”http://www.wsmo.org/ontologies/amazon/amazonOntology#”,
bk ”http://www.wsmo.org/ontologies/amazon/bookOntology#”}

webService ”http://www.wsmo.org/webServices/amazonWebService”
...
capability

precondition
?request memberOf am#itemSearchRequest or
...

postcondition
(?request[author hasValue ?author] memberOf am#searchBooks implies

exists ?container
(?container memberOf am#itemContainer and

forall ?item
(?container[items hasValue ?item] memberOf am#itemContainer implies

?item[author hasValue ?author] memberOf bk#amazonBook
)

)
) and
...

...

interface amazonWSInterface
choreography

stateSignature
importsOntology ”http://www.wsmo.org/ontologies/amazon/amazonOntology#”

in
concept am#itemSearchRequest withGrounding

”http://webservices.amazon.com/AWSECommerceService/2007−02−22# wsdl.
interfaceMessageReference(AWSECommerceServicePortType/ItemSearch/In)”,

...
out

concept am#itemContainer withGrounding {
”http://webservices.amazon.com/AWSECommerceService/2007−02−22# wsdl.

interfaceMessageReference(AWSECommerceServicePortType/ItemSearch/Out)”,
...

transitionRules

if (?ItemSearchRequest memberOf am#itemSearchRequest) then
add( # memberOf am#itemContainer)

endIf
...� �

Listing 1: (Partial) WSMO Web service description of the Amazon Web
Service.
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<grounding process="QName">

<activity name="NCName"
portType="QName"
operation="NCName"/>*

</grounding>

Listing 2: Partial grounding

<grounding process="QName">
<conversation name="NCName"

partnerLinkType="QName"
myRole="NCName"
partnerRole="NCName"/>*

<activity name="NCName"
operation="NCName"/>*

</grounding>

Listing 3: Full grounding
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<wsdl ... targetnamespace="http://webservices.amazon.com/AWSECommerceService/2004-11-10" ...>
<types>

<xs:element
name="ItemSearch"
sawsdl:modelReference="am:itemSearchRequest"
sawsdl:liftingSchemaMapping="http://...itemSearchRequestLifting.xslt"
sawsdl:loweringSchemaMapping="http://...itemSearchRequestLowering.xslt">
...

</xs:element>
<xs:element

name="ItemSearchResponse"
sawsdl:modelReference="am:itemam#itemContainer"
sawsdl:liftingSchemaMapping="http://...itemSearchResponseLifting.xslt"
sawsdl:loweringSchemaMapping="http://...itemSearchResponseLowering.xslt">
...

</xs:element>
...

</types>
<portType name="AWSECommerceServicePortType">

<operation name="ItemSearch">
<input element="tns:ItemSearch"/>
<output element="tns:ItemSearchResponse"/>

</operation>
...

</portType>
</wsdl>

Listing 4: (Partial) SAWSDL description of the Amazon Web Service
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<process
targetnamespace="http://www.example.org/processes"
name="amazon" ...>
...
<bl:conversations>

<bl:conversation
name="salesConv"
b4s:ws="http://www.wsmo.org/webServices/

amazonWebService#"/>...
</bl:conversations>...
<flow>

<links>
<link name="receive-to-..." />
<link name="...-to-send" />...

</links>...
<extensionActivity>

<bl:interactionActivity name="receiveRequest"
conversation="salesConv"
inputVariable="item">

<sources>
<source linkName="receive-to-..."/>...

</sources>...
</bl:interactionActivity>

</extensionActivity>
<extensionActivity>

<bl:interactionActivity name="sendResponse"
conversation="salesConv"
outputVariable="confirmation">

<targets>
<target linkName="...-to-send"/>...

</targets>...
</bl:interactionActivity>

</extensionActivity>...
</flow>

</process>

(a) Process logic

<grounding
...
xmlns:am="http://webservices.amazon.com/

AWSECommerceService/2004-11-10"
process="http://www.example.org/processes#amazon"
...>
<activity name="receiveRequest"

portType="am:AWSECommerceServicePortType"
operation="ItemSearch"/>*

<activity name="sendResponse"
portType="am:AWSECommerceServicePortType"
operation="ItemSearch"/>

</grounding>

(b) Grounding specification

Figure 6: BPEL light and grounding
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…

BPEL4SWS process Semantic Service Bus

act=op

act=op

semantic synchronous invocation of a process

Capabilities
Choreography

grounding

SWS
Repository

WSMO Web Service

Figure 7: Discovery and invocation of a short-running BPEL4SWS process
based on a WSMO WS description.

50



BPEL4SWS process Semantic Service Bus

semantic synchronous invocation of a service
WSMO Goal

…

…

Capabilities
Choreography

context

1

2

3

Figure 8: Discovery and invocation of a short-running activity implementation
based on a WSMO Goal description.
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…

BPEL4SWS process Semantic Service Bus

act=op

act=op

semantic asynchronous invocation of a process

Capabilities
Choreography

grounding

WSMO Web Service

SWS
Repository

Figure 9: Discovery and invocation of a long-running BPEL4SWS process
based on a WSMO WS description.
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BPEL4SWS process Semantic Service Bus

act=op

semantic asynchronous invocation of a service

grounding

WSMO Goal

Capabilities
Choreography

1

2

3

4

context

Figure 10: Discovery and invocation of a long-running activity implementation
based on a WSMO Goal description.
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Figure 11: Architecture of a BPEL4SWS Engine.
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